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ABSTRACT

Text reuse is of fundamental importance in humanities research,
as similar pieces of text in different documents provide invaluable
information about the historical spread and evolution of ideas. Tra-
ditionally, scholars have studied text reuse at a very small scale, for
example, when comparing the writings of two philosophers; how-
ever, modern digitized corpora spanning entire centuries promise
to revolutionize humanities research through the detection of pre-
viously unobserved large-scale patterns.

This paper presents insights from ReceptionReader, a system
for large-scale text reuse analysis over almost all known 18th-
century books, articles, and newspapers. The system implements a
data management pipeline for billions of text reuse instances and
supports analysis tasks based on database queries (e.g., retrieving
the most reused quotes from queried documents).

The paper describes the data management considerations that
led from an originally deployed to an extensively evaluated and
substantially optimized version of the system, as the performance
of different normalization levels and query execution engines was
evaluated for various queries of interest. The paper offers insights
from the observed trade-offs and how they were resolved to fit our
requirements. In summary, the paper explains how, for our system,
(1) the row store engine (MariaDB Aria) emerged as the overall
optimal choice for query processing, while (2) big data processing
(Apache Spark) proved irreplaceable for preprocessing.
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1 INTRODUCTION

Text reuse is an essential methodological element in humanities
research, which involves the detection and analysis of similar pieces
of text across different documents. Researchers use it to trace the
evolution and influence of ideas, quantify the impact of specific
authors and literary works, and identify context crucial for the
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meaning of a text [20]. Traditionally, text reuse has been considered
on a small scale, for example, when comparing the writings of
two philosophers. However, large-scale digitized historical corpora
spanning centuries are transforming this field, as they enable the
automatic detection and analysis of text reuse, uncovering large-
scale patterns previously indiscernible with smaller-scale analysis.

This paper presents insights from ReceptionReader1[17], a
system for large-scale text reuse analysis developed by a mul-
tidisciplinary team of experts in history, NLP, and data science
that has already pioneered intellectual history research [18].
ReceptionReader is built upon billions of text reuse instances iden-
tified over almost all known 18th-century documents (Section 2),
and provides two main downstream analysis tasks: reception, ask-
ing for all the text reuse instances stemming from a particular doc-
ument (Section 3.3.1); and top quotes, asking for the most reused
quotes stemming from a queried set of documents (Section 3.3.2).

In more detail, the paper presents the data management consider-
ations that led from an originally deployed but unoptimized version
to an extensively evaluated, substantially optimized, and soon-to-
be-deployed version of the system. The optimization targets system
performance metrics (Section 3), such as query latency, storage size
(disk space to materialize the database and related indexes), and
computing costs (billing expenses for cloud computing).

The paper dives into design choices that raise significant trade-
offs in the performance metrics of interest and the considerations
that led to optimal choices for the system at hand. In particular, we
consider three levels of database normalization: fully normalized (re-
ferred to as Standard), task-agnostic normalized (Intermediate),
and task-specific denormalized (Denormalized); as well as three
query execution frameworks: big-data processing (Apache Spark),
indexed row store database (MariaDB Aria), and compressed col-
umn store database (MariaDB Columnstore).

We evaluate each design choice over various queries for each
downstream task and study the trade-offs that arise (Section 4). First,
database normalization raises a trade-off between storage size and
query latency. For example, Denormalized data lead to minimal
query latency at the expense of increased storage size, especially
for the reception task. Second, the query execution frameworks
raise their own trade-offs. For example, Columnstore has a smaller
storage size than Aria for the same level of normalization at the
expense of higher query latency, while Spark exhibits the highest
query latency but is the only framework to handle efficiently heavy
pre-processing tasks. Considering the computing costs and applica-
tion constraints for our setting (e.g., what query latency or billing
budget is deemed acceptable), we navigate the observed trade-offs
and arrive at a chosen multi-modal design, with Denormalized data
in Aria as an optimal arrangement at the user-end of the pipeline,
but Spark as an irreplaceable back-end for pre-processing.

1See https://receptionreader.com/ for the deployed version of the system.
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2 BACKGROUND

We begin with a brief presentation of the corpora (Section 2.1), text
reuse detection algorithm (Section 2.2), and pre-processing pipeline
(Section 2.3) of ReceptionReader, which are considered fixed for
the evaluation presented later in the paper.

2.1 Historical Text Corpora

The system hosts the digitized corpora shown in Table 1. ECCO
(Eighteenth Century Collections Online) [8, 9] and EEBO-TCP (Early
English Books Online Text Creation Partnership) [13] contain books
in english, while Newspapers (British Library Newspapers) [7] con-
tains newspaper articles. Most documents were published in the
17th and 18th centuries. The collections were digitized with OCR
(optical character recognition) by Christy et al. [5]. While of im-
mense value, the raw OCR’ed texts are noisy, partly due to archaic
fonts and layouts [10, 24], leading to varying OCR quality [12].

Table 1: Document collections in the historical text corpora.

Document length is measured in number of characters.

Collection Publication Years # Docs Avg. Doc Length
ECCO 1505-1839 207613 295641

EEBO-TCP 1473-1865 60327 18148
Newspapers 1604-1804 1769266 9519

2.2 Text Reuse Detection

For the purposes of this paper, any pair of similar pieces of text
from different documents defines one instance of text reuse. Each
piece is identified by a (document ID, start-offset, end-offset) tu-
ple, and similarity is controlled via thresholds for length and
edit distance determined during an earlier development phase of
ReceptionReader [21, 23]. To provide some background, text reuse
instances are identified as described in Vesanto [21], using BLAST
(Basic Local Alignment Search Tool) [2], a fuzzy-string-matching
algorithm that is widely used for DNA sequence matching and has
proved to be more effective than alternatives in finding text reuses
with noisy OCR data [23]. Essentially, BLAST is employed across
the corpora in an all-to-all document comparison and outputs ‘hits’
of similar piece pairs as instances of text reuse2.

2.3 Pre-processing Pipeline

To become useful for downstream tasks, the detected text reuses
are pre-processed in a three-phase pipeline (Figure 1).
Phase 1: Defragmentation. When a text passage is reused in
several documents, its offsets might differ slightly across BLAST
hits due to OCR noise (overlapping red boxes in documents B and D
in Figure 1). This phenomenon is known as fragmentation and leads
to downstream issues, either due to redundancy (many overlapping
pieces referring to the same text) or loss (pieces shorter than the full
passage). As remedy, ReceptionReader merges overlapping pieces
of similar lengths within a document, resulting in new defragmented
pieces and defragmented reuses (blue boxes and lines in Figure 1).

2In what follows, ‘instance(s) of text reuse’ will simply be referred to as ‘text reuse(s)’.
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Figure 1: Pre-processing: BLAST hits (red) are defragmented

(blue) and clustered (purple). In each cluster, the earliest piece

is identified as the ‘source’ (dashed yellow).

Phase 2: Clustering. To identify how text is reused across mul-
tiple documents, ReceptionReader builds a network with defrag-
mented pieces as nodes and text reuse pairs as undirected edges,
and identifies node clusters in it, using a label-propagation cluster-
ing algorithm (specifically, Chinese Whispers [3]). The resulting
clusters are groups of similar defragmented pieces from different
documents, depicted with rounded purple rectangles in Figure 1.
Phase 3: Source identification. Within a cluster, the piece as-
sociated with the earliest publication date is of particular signif-
icance for historical analysis and labeled as the ‘source’ of text
reuse (dashed yellow rectangles in Figure 1). Each other piece in
the cluster is correspondingly labeled as a ‘destination’.
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Figure 2: Simplified schema for pre-processed data. Relations

are materialized for the Standard normalization level.

The pre-processing pipeline is considered fixed for this paper,
as it was developed over years of field expertise by our team. It is
implemented in Apache Spark, scales to billions of BLAST hits, and
outputs Spark data frames as Parquet files. We omit the full schema
but use a simplified one in what follows (Figure 2).

3 EVALUATION SETUP

This section presents the datasets (Section 3.1), design choices (Sec-
tion 3.2), and performance metrics (Section 3.4) involved in the
evaluation, with the evaluation performed for two analysis tasks,
namely reception and top quotes (Section 3.3). At a high level, the
evaluation is organized as follows: First, for a given dataset, a data-
base is organized according to some design choices, which entail
the materialization of relations and indexes in a particular format
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(e.g., relation tables and associated indexes); next, representative
query workloads for the two analysis tasks are executed under spec-
ified design choices; and finally, performance metrics (e.g., query
latency) are collected and used to evaluate the design choices.

3.1 Datasets

In evaluating system design choices, we are interested in good
scalability, particularly as we anticipate that more digital corpora
will be added later to the system. Towards that end, we evaluated
design choices on datasets of varying sizes, with datasets defined as
subsets of the collections described in Section 2.1. For the economy
of presentation, this paper uses two datasets at the larger end of
the spectrum (Table 2), and evaluates scalability based on how
performance changes when a new corpus is added to the data.

Table 2: Text Reuse Datasets. Numbers rounded to 3 digits;

K: thousand, M: million, B: billion.

Attribute Basic Extended

Collections ECCO & ECCO, EEBO-TCP
EEBO-TCP & Newspapers

documents 267K 2.04M
BLAST hits 966M 6.31B

defragmented pieces 384M 1.10B
avg. defrag. piece length 748 461

defragmented reuses 965M 5.61B
clusters 50.3M 91.6M
authors3 46.0K 46.0K

Specifically, the first dataset, Basic, combines ECCO and
EEBO-TCP: reuse detection (Section 2.2) returns nearly one billion
BLAST hits for it, and pre-processing (Section 2.3) yields 384 million
defragmented pieces in 50.3 million clusters. The second dataset,
Extended, adds Newspapers: reuse detection returns 6.5× more
hits compared to Basic, and pre-processing yields about 2.8× more
defragmented pieces and 1.8× clusters.

3.2 Design choices

In optimizing the system, we encountered two choices that raised
significant trade-offs that crucially affected performance: execution
frameworks and normalization. Different execution frameworks
offer different data storage formats (e.g., row-oriented vs column-
oriented) and access methods (e.g., distributed reads vs indexed
scans), leading to trade-offs between query latency and storage size.
Moreover, normalization raises a similar trade-off: typically, on one
end, full normalization minimizes redundancy and storage space but
complicates queries and increases query latency; on the other end,
denormalization (practically, combining data in fewer tables with
more attributes) increases redundancy and storage requirements
but simplifies queries and decreases latency.

While these trade-offs might be individually understood and
anticipated (see Ramakrishnan and Gehrke [15]), what choices lead
to their joint optimization is a non-obvious problem, as it also
depends on the unique features of the application at hand (in this
3Same number of authors because Newspapers metadata do not contain authorship.
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Figure 3: Additional relations materialized for the

Intermediate and Denormalized levels

case, downstream analysis tasks on text reuse and corresponding
user requirements) and the computational setting (e.g., the billing
cost of the different options in a cloud environment). Therefore,
this paper is an applied exercise on optimizing a real-world data
science system, aiming to extract insights into how the different
choices interact and lead to an optimized configuration.

3.2.1 Query Execution Frameworks. Each framework has a unique
format to store the data and a corresponding execution engine to
answer downstream tasks expressed as SQL queries (Table 3). Spark
is implemented as a Kubernetes cluster with 38 worker pods and
one driver pod. The worker and driver pods each have two cores
and 32 GiB RAM. Additionally, the driver pod has 16 GiB persistent
storage for code and python environments. The text reuse data
are stored as Parquet files on cloud data buckets and Spark loads
the data as distributed dataframes to answer downstream queries.
Aria and Columnstore are relational frameworks implemented as
MariaDB databases on a cloud Virtual Machine (VM) with has 16
cores, 78 GiB RAM. A persistent cloud storage volume is attached
to the VM and the text reuse data are loaded as relational tables.
Additionally, we create B+-tree table indexes for Aria.

We use the cloud computing resources provided by CSC4 to
implement each framework. The resource costs for running the
system in CSC measured in Billing Units (BU), reported in Table 3.

3.2.2 Normalization Levels. The evaluation includes the follow-
ing options. Standard: Uses the fully normalized tables shown in
Figure 2. Downstream analysis queries involve joining multiple
tables and filtering for desired results. Intermediate: Material-
izes a task-agnostic relation containing destination pieces in each
text reuse cluster shown in Figure 3. The key distinction from the
Standard level is that this additional relation is materialized and
used in downstream tasks. Denormalized Level: Materializes de-
normalized relations specific to each downstream task as shown in
Figure 3. The task-specific denormalized tables are materialized by
joining Standard level tables.

3.3 Analysis Tasks

Once design choices are specified according to the options outlined
in Section 3.2 above, we consider system performance for two
analysis tasks, namely reception and top quotes. These tasks are
selected for the evaluation from field expertise, as they have proved
to be central to the research of the historians in our team.

4https://research.csc.fi/cloud-computing
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Table 3: Execution frameworks. Units for cost rates are CSC Billing Units (BU), tebibytes (TiB) and hours (hr).

Framework Data Storage Query Execution
Format Cost Rate Engine Cost Rate

Spark Parquet files 1 BU/hr/TiB Apache Spark SQL 1254 BU/hr
Aria Indexed Row-store tables 3.5 BU/hr/TiB MariaDB Aria 24 BU/hr

Columnstore Compressed Columnar tables 3.5 BU/hr/TiB MariaDB ColumnStore 24 BU/hr

SELECT dp1.doc_id AS src_doc_id,dp2.doc_id AS dst_doc_id
dp1.start AS src_start, dp2.start AS dst_start,
dp1.end AS src_end, dp2.end AS dst_end
FROM source_pieces
INNER JOIN defrag_pieces dp1 USING(piece_id)
INNER JOIN destination_pieces dsp USING(cluster_id)
INNER JOIN defrag_pieces dp2 ON dsp.piece_id = dp2.piece_id
WHERE dp1.doc_id = D

SQL 1: Query for reception task with Intermediate level data

SELECT cluster_id, piece_id FROM source_pieces sp
RIGHT JOIN clustered_pieces cp USING(cluster_id,piece_id)
WHERE sp.piece_id IS NULL

SQL 2: Query to materialize the destination_pieces relation

SELECT re.* FROM reception_edges re WHERE src_doc_id = D

SQL 3: Query for reception task with Denormalized level data

3.3.1 Reception Task. Reception studies are a sub-field of historical
research, where historians study how a document was received
(hence, reception) after its publication. These studies focus on how
the text of a document is reused in other documents (e.g., in book
reviews, journals, or newspapers) and analyze the context surround-
ing these reuses. Therefore, to aid historians with reception studies,
our system gathers and displays all the text reuse instances origi-
nating from a given document 𝐷 . We define the task of gathering
these reuses as the reception task.

The logical steps to complete the reception task with the pre-
processed data (Figure 2) are: (1) find all the clusters where the
source piece is in 𝐷 , (2) gather all the destination pieces in those
clusters, and (3) create reception edges between each source piece
and each destination piece in a cluster and return them as the result.

Following the above steps, SQL 1 shows the query
for the Intermediate level which uses the materialized
destination_pieces relation. For the Standard level, the only
difference is that destination_pieces is computed using the sub-
query shown in SQL 2. For the Denormalized level, we materialize
the reception_edges relation containing the reception edges for
all documents and then filter for the given 𝐷 as shown in SQL 3.

The latency of the reception task is largely determined by the
number of reception edges for the given document 𝐷 . The distri-
bution of number of reception edges across documents in Basic
dataset is shown in Figure 4, revealing a heavy-tail distribution.
Therefore, to effectively evaluate the system for the reception task,
we obtain a representative workload of queries by sampling 10
documents from each of the 10 log-spaced buckets (vertical bands
in Figure 4). Documents in higher workload buckets have more
reception edges, and the corresponding queries will have higher
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Figure 4: Number of reception edges distribution for the

Basic dataset. The log-spaced workload buckets, shown as

vertical bands, are used for sampling evaluation queries.

latency. This is used in Section 4 to dissect the trade-offs between
different normalization levels and frameworks.

3.3.2 TopQuotes Task. Another common task for historians is to
identify for further study the most influential quotes from a group
of documents, with the document group typically belonging to
the same author or same category according to some taxonomy.
Towards this end, historians define the following: (a) G is a group of
documents based on certain metadata attributes (e.g., all editions of
a book by a specified author), (b) quote is a passage of text between
150 and 300 characters from a given document group 𝐺 , and, (c)
n_reuses for a specific quote is the number of unique documents
of other authors that reuse it, and is used to quantify its influence.
Based on these definitions, to identify the most influential quotes
from a given document group 𝐺 , we define the top quotes task as
finding the top 𝑘 = 100 quotes with the highest n_reuses from
group 𝐺 .

The query to complete the task with Intermediate level data is
shown in SQL 4. At a high level, the query searches source pieces
for quotes from 𝐺 , computes n_reuses by filtering out destina-
tion documents from the same author as 𝐺 , and returns the top
𝑘 = 100 source pieces as the result. For the Standard level, the
only difference again is that the destination_pieces relation in
SQL 4 is computed with the subquery shown in SQL 2. For the
Denormalized level, we materialize the source_piece_metrics
relation which precomputes n_reuses for each source piece regard-
less of length. Then, the task query filters the relation for the given
𝐺 and quote length as shown in SQL 5.

The latency for the top quotes task is largely determined by
the n_reuses term a quote and the number of quotes in a given
𝐺 . Therefore, to study the distribution of query latency, we use
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WITH filtered_clusters AS (
SELECT *, end - start AS piece_length FROM source_pieces
INNER JOIN defrag_pieces USING(piece_id) WHERE doc_id
IN G AND (end - start) BETWEEN 150 AND 300

),group_authors AS ( SELECT DISTINCT author_id
FROM doc_authors WHERE doc_id IN E AND author_id IS NOT NULL
), cluster_stats AS (SELECT cluster_id,

COUNT(DISTINCT doc_id) as n_reuses FROM filtered_clusters
INNER JOIN destination_pieces dsp USING (cluster_id)
INNER JOIN defrag_pieces dp ON dsp.piece_id = dp.piece_id
INNER JOIN doc_authors USING(doc_id)
LEFT JOIN group_authors qa USING(author_id)
WHERE qa.author_id_i IS NULL GROUP BY cluster_id

) SELECT * FROM cluster_stats INNER JOIN filtered_clusters
USING (cluster_id) ORDER BY n_reuses DESC LIMIT 100

SQL 4: Query for top quotes with Intermediate level data

SELECT * FROM source_piece_metrics WHERE piece_length BETWEEN
150 AND 300 AND doc_id IN G ORDER BY n_reuses DESC LIMIT 100

SQL 5: Query for top quotes with Denormalized level data
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Figure 5: Distribution of sum_n_reuses for the Basic dataset.

The log-spaced workload buckets, shown as vertical bands,

are used for sampling evaluation queries.

sum_n_reuses, the sum of n_reuses for each quote in 𝐺 . We com-
pute sum_n_reuses for every group in Basic with at least 100
quotes and show the distribution in Figure 5, which, similar to the
reception task, reveals a heavy-tail distribution. Here, a group is
defined according to a commonly used literature taxonomy, with
one group corresponding to books by the same author on the same
topic [17]. To effectively evaluate the system for the top quotes
task, we obtain a representative workload of queries by sampling
one group from each of the 10 log-spaced buckets (vertical bands in
Figure 4). Queries corresponding to higher workload buckets will
have larger sum_n_reuses and hence a larger latency. Similarly,
we sample 10 groups from the query distribution of the Extended
dataset for evaluation.

3.4 Performance Metrics

The following performance metrics are of interest.
Query Latency is the time required to obtain and iterate through
the result set for a query. To mitigate the effect of network latency,
in the Aria and Columnstore frameworks, we execute the queries

directly on the VM where the data is stored. A low query latency is
desirable as it leads to better user experience.
Data Storage Size is the disk space used for the materialized tables
necessary for a task, and varies based on the normalization level
and execution framework. Smaller storage sizes are preferable due
to reduced costs and improved scalability. In our experiments, we
measure the storage size in TiB and calculate the total storage cost
in BU/hr using the rates for each framework (Table 3).
Query Execution Cost The computational resources required to
process a downstream query. We calculate it in BUs using the exe-
cution cost rates from Table 3 and the query latency. Lower query
execution costs are beneficial, reducing overall system running
costs and facilitating scalability to support more users.

4 RESULTS AND DISCUSSION

Our evaluation, outlined in section 3, focuses on two core
design choices: normalization levels (Standard, Intermediate,
Denormalized) and execution frameworks (Spark, Aria,
Columnstore). We assess each combination of these choices based
on query latency, data storage size, and execution costs, aiming to
optimize system performance for downstream analysis tasks.

The evaluation process involves materializing relations for the
chosen normalization level, loading data into the evaluated frame-
work, and executing downstream tasks with queries sampled from
workload buckets (see Figures 4 and 5). We set query timeouts
of 5 and 15 minutes for the reception and top quotes tasks, re-
spectively, and collect relevant evaluation metrics. The evaluation
results are reported and discussed in the following sections: Sec-
tion 4.1 discusses the practicalities of materializing and loading
data. Section 4.2 presents the query latency results across buckets
for each downstream task and discusses the impact of each design
choice. Section 4.3 discusses each design choice’s trade-offs between
storage and execution costs.

4.1 Materialization and Loading

The Intermediate and Denormalized levels require additional
relations (Figure 3) to be materialized before answering queries
for downstream tasks. We attempted materializing these additional
relations directly in each evaluated execution framework. However,
in practice the Denormalized tables failed to materialize after 24
hours in the Aria framework, and the Columnstore framework
crashed for both normalization levels due to a memory error from
large table joins. Therefore, materializing directly in the Aria and
Columnstore frameworks is infeasible. Consequently, we use the
Spark framework to materialize the additional relations and bulk-
load them into the relational frameworks.

For the Extended dataset, the Spark framework takes 2,
11 and 24 minutes to materialize the destination_pieces,
reception_edges and source_piece_metrics relations, respec-
tively. The number of rows in these materialized relations are shown
in Table 4. Note that while the source_piece_metrics relation has
fewer rows, materializing it takes the longest because the n_reuses
term for every source piece is computed using a computationally
expensive aggregation. In contrast, Spark is able to efficiently ma-
terialize the billions of reception_edges rows in a half that time.
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Table 4: Number of rows in the additional materialized rela-

tions for the Intermediate and Denormalized levels

Materialized Relation Dataset
Name Normalization Basic Extended

destination_pieces Intermediate 324M 985M
reception_edges Denormalized 1.28B 4.74B

source_piece_metrics Denormalized 56.1M 90.1M

The bulk-loading the materialized relations into the relational
frameworks is directly proportional to the number of rows reported
in Table 4, taking 24 minutes, 2.5 hours and 3.5 minutes, respectively
for the Extended dataset. Indexing the tables in Aria takes an
additional 51 minutes, 4.3 hours and 7.1 minutes, respectively.

4.2 Latency results

The materialization and loading discussed in Section 4.1 are typi-
cally performed offline and therefore do not affect the end-users of
the system. However, the queries for the downstream analysis tasks
are executed online and the query latency plays an important role
in determining the quality of the user experience. In this section, we
report the latencies from executing queries sampled from different
workload buckets for each downstream task in Figures 6 and 8. In
each plot, the x-axis corresponds to the different buckets and the
colors correspond to different normalization levels.

For both downstream tasks, the queries for the Standard level
fails to complete in the Columnstore framework (Figures 6 and 8
right), even for the lowest workload bucket. This is because the
Columnstore framework uses a slower disk-based hash join when
an in-memory hash join cannot be performed. Therefore, when
the destination_pieces relation is not materialized and has to
be computed on-the-fly using several joins with large relations,
the slower disk-based hash joins are used. The results in large
latencies rendering the Columnstore framework infeasible with
the Standard normalization level.

Now we share more insights from the task-specific results.
Reception Results. At the highest workload bucket, queries of all
normalization levels fail to complete in both Columnstore and Aria
(see Figure 6 left and middle). Specifically, the failure of the query
for the Denormalized level indicates the relational frameworks
are unable to fetch and iterate over the large result set within the
time limit. On the other hand, the distributed Spark framework
succeeds due to its ability to pre-fetch from different partitions and
efficiently iterate over large result sets.

For low workload buckets (0, 1 and 2), with the smallest number
of reception edges, the Aria framework with Denormalized data
has the lowest query latency due to the indexed and materialized
reception_edges relation. In comparison, the Columnstore and
Spark frameworks with no indexed relations have query latency
one and two orders of magnitude larger.

Interestingly, for high workload buckets, the query latency for
the Intermediate and Denormalized levels are higher than that
of the Standard level for the Aria framework (Figure 6(b) middle).
These higher latencies were due to page faults from a cold system
cache during evaluation. To remedy this, we re-ran each query
twice, recorded the latency from the second run, and presented

the hot-cache results for the Extended dataset in Figure 7. These
results show that with a hot-cache, all queries have an overall
lower query latency, and, the queries for the Intermediate and
Denormalized levels are faster than that of the Standard level.
Top Quotes Results. Across all the frameworks in Figure 8, the
Denormalized level has a significantly lower latency than the
Standard and Intermediate levels. Specifically, in the Aria frame-
work the Denormalized level on average has 3000× lower latency
than the Intermediate level due to the materialized and indexed
source_piece_metric relation with pre-computed n_reuses.

When we scale to the Extended dataset, previously successful
Intermediate level and Standard level queries in the Aria frame-
work fail at higher workload buckets (7, 8 and 9). This failure high-
lights the limitation of Aria which is not optimized for the aggrega-
tions queries required to compute n_reuses using larger relations.
In contrast, the Intermediate level in Spark and Columnstore
are successful and have consistent query latency across workload
buckets due to their execution engines being optimized for such
large-scale aggregation queries.

4.3 Data Storage and Execution Cost Results

Moving on from the latency which is important for end-users to
billing metrics which are important for system maintainers. The
size of each normalization level’s materialized relations (Section 4.1)
affect the storage costs and the query latency of the execution frame-
work (Section 4.2) affects the execution cost. Therefore, as discussed
in Section 3.4 we compute the billing costs for each design choice
using the cost rates from Table 3. The trade-offs between these
costs for the different downstream tasks and dataset are visualized
in Figure 9. In each plot, the y-axis is the execution cost measured
in CSC Billing Units (BUs) and the x-axis is the data storage cost
measured in billing units per hour (BU/hr). The execution cost vari-
ance is from the variance in query latency from different workload
buckets. The desirable region is the bottom-left of the plot, which
corresponds to both low storage and execution costs.

From Figure 9 reception task, the Aria framework has the lowest
execution cost of 0.01 BU and the highest storage cost of 0.2 for the
Basic dataset due to its low latency and large materialized relations,
respectively. Contrastingly, Spark has the highest execution cost
of 50 BU and the lowest storage costs of only 0.01 BU/hr due to
its expensive distributed processing and efficient storage format,
respectively. We notice that when scaling to the Extended dataset,
the Columnstore framework for Denormalized data starts offering
a low storage cost of 0.1 BU/hr for only a slightly higher execution
cost of 0.13 BU.

For the top quotes task (Figure 9 right), the smaller
Denormalized tables offer the lowest storage and execution costs
across frameworks. Furthermore, the Aria framework with indexed
tables has the overall lowest query execution cost. However, due to
the indexing, Aria has the highest storage costs for Intermediate
and Standard data. Therefore, Columnstore framework offers a
better trade-off for the Intermediate level and Spark is the only
feasible option for the Standard level.

4.4 Discussion

There are three main takeaways from the results presented above.
6
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Figure 6: Latency for reception task queries from different workload buckets (see Figure 4). Columns and rows correspond to

frameworks and datasets respectively. Missing results indicate that the queries didn’t finish after 5 minutes.
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Figure 7: Reception query latency for Aria framework with

hot cache for Extended dataset.

Aria with Denormalized data is optimal due to the significantly
lower latency from materializing and indexing task-specific data, es-
pecially for queries from lower order buckets. While Denormalized
data has materialization and data storage costs, especially for the
reception task, query latency is more critical for end-users.
Spark is irreplaceable in the large-scale pre-processing of text
reuse data (Section 2). Furthermore, Section 4.1 shows that Spark is
the only viable framework for the materialization and loading data
required for the Intermediate and Denormalized levels. Lastly,
for both tasks, Spark is the only framework to consistently answer
Standard queries from the highest order bucket.
Columnstore is a middle ground between the Spark and Aria
frameworks. Compared to Aria, it has a higher but consistent query
latency. And similar to Spark, the Columnstore framework has
very low storage costs, even with Denormalized data. The two
main drawbacks are inability to run Standard queries and the high
materialization and loading costs.

5 RELATEDWORKS

Several systems for exploring text reuse exist [6, 11, 16, 22]. While
some of them use different approaches for identifying text reuses

from noisy OCR data, such as n-grams [19], they have similar pre-
processing phases, such as filtering, merging and clustering the
identified text reuses. However, many of these systems focus pri-
marily on historical newspaper corpora and are built upon only a
few million text reuses, at most. In contrast, ReceptionReader is
built upon billions of text reuses from large heterogeneous corpora
and, based on our results, the best-performing configuration that
emerged from the evaluation is anticipated to scale comfortably to
corpora larger than the current ones. Moreover, ReceptionReader
is now optimized for complex downstream analytical tasks such as
reception and top quotes, while previous systems simply provide
an interface to view the pre-processed text reuses.

Several studies compare row-store and column-store database
management systems [1, 4]. However, these studies use synthetic
schema, data, and queries from benchmarks like SSB [14] to analyze
the generic trade-offs offered by different database systems. In
contrast, we explore trade-offs and extract insights in the context of
a specific application (analyzing large-scale text reuse data), from
a combination of execution frameworks and normalization levels.
The purpose of this paper is not to propose and evaluate novel
algorithms or DBMSs, but rather to explore, dissect, and resolve the
data management challenges related to a real data science system.

6 CONCLUSION

In this paper, we presented insights from ReceptionReader, our
system for analyzing text reuses in large historical corpora. We
studied the impact of different data normalization and execu-
tion frameworks on the performance of the system for the two
downstream analysis tasks of reception and top quotes. Specifi-
cally, we considered three options for normalization (Standard,
Intermediate, and Denormalized) and execution frameworks
(Aria, Columnstore, and Spark). Each normalization had distinct
materialized tables and downstream queries, while each framework
had its own storage format and execution engine. We evaluated the
system on each combination of options with datasets containing
billions of text reuses for downstream tasks over several sampled
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queries. Each combination offered non-obvious trade-offs between
metrics like query latency, data storage costs and execution costs.

First, the Columnstore framework was infeasible with Standard
data, but with Denormalized data offered scalability along with
low storage and execution costs. Next, the Spark framework is
irreplaceable for the back-end large-scale pre-processing of text
reuse data. Additionally, it was the only feasible option for material-
izing Intermediate and Denormalized data for other frameworks.
Finally, the Aria framework with the indexed Denormalized data
had higher materialization and data storage costs. However, it also
had the lowest latency, proving optimal for user-end applications.

In conclusion, there are two high-level insights that we hope the
readers take from this study. The first is that, when considering
the design of a data science system, resolving the performance
trade-offs that arise from different choices for data management
may depend crucially on the resource constraints and user require-
ments rather than isolated system performance. Indeed, while for
our resource costs and availability Aria proved to be the best op-
tion for resolving the data storage-execution cost at the user-end
of the processing (Section 4.3, different settings could have led to

a different outcome. The second is that because different execu-
tion frameworks and database designs may perform differently
for different computation tasks (e.g., pre-processing vs. user-query
processing), it may be worth using a different framework at differ-
ent processing stages, even at the additional cost of transforming
data from one framework to another between processing stages. In-
deed, for ReceptionReader, it proved that a combination of Spark
for pre-processing and intermediate materialization stages with
Denormalized Aria for user-query processing stages was practi-
cally a necessity, as the relational engines could not handle the
former stages and Spark under-performed in query latency for the
latter.
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